Selasa, 21 Desember 2021

IMPLEMENTASI ALGORITMA DIVIDE AND CONQUER PADA SORTING DAN SEARCHING

1. Insertion sort

    Salah satu algoritma sorting yang paling sederhana adalah insertion sort. Ide dari algoritma ini dapat dianalogikan seperti mengurutkan kartu. Penjelasan berikut ini menerangkan bagaimana algoritma insertion sort bekerja dalam pengurutan kartu. Anggaplah anda ingin mengurutkan satu set kartu dari kartu yang bernilai paling kecil hingga yang paling besar. Seluruh kartu diletakkan pada meja, sebutlah meja ini sebagai meja pertama, disusun dari kiri ke kanan dan atas ke bawah. Kemudian kita mempunyai meja yang lain, meja kedua, dimana kartu yang diurutkan akan diletakkan. Ambil kartu pertama yang terletak pada pojok kiri atas meja pertama dan letakkan pada meja kedua. Ambil kartu kedua dari meja pertama, bandingkan dengan kartu yang berada pada meja kedua, kemudian letakkan pada urutan yang sesuai setelah perbandingan. Proses tersebut akan berlangsung hingga seluruh kartu pada meja pertama telah diletakkan berurutan pada meja kedua. Algoritma insertion sort pada dasarnya memilah data yang akan diurutkan menjadi dua bagian, yang belum diurutkan (meja pertama) dan yang sudah diurutkan (meja kedua). Elemen pertama diambil dari bagian array yang belum diurutkan dan kemudian diletakkan sesuai posisinya pada bagian lain dari array yang telah diurutkan. Langkah ini dilakukan secara berulang hingga tidak ada lagi elemen yang tersisa pada bagian array yang belum diurutkan.

void insertionSort(Object array[], int startIdx, int endIdx) 

{

   for (int i = startIdx; i < endIdx; i++) {

   int k = i;

   if(((Comparable) array[k]).compareTo(array[j])>0) {

   for (int j = i + 1; j < endIdx; j++) {

   k = j;

   }

   }

   swap(array[i],array[k]);

   }

}

2. Selection sort

    Jika anda diminta untuk membuat algoritma sorting tersendiri, anda mungkin akan menemukan sebuah algoritma yang mirip dengan selection sort. Layaknya insertion sort, algoritma ini sangat rapat dan mudah untuk diimplementasikan. Mari kita kembali menelusuri bagaimana algoritma ini berfungsi terhadap satu paket kartu. Asumsikan bahwa kartu tersebut akan diurutkan secara ascending. Pada awalnya, kartu tersebut akan disusun secara linier pada sebuah meja dari kiri ke kanan, dan dari atas ke bawah. Pilih nilai kartu yang paling rendah, kemudian tukarkan posisi kartu ini dengan kartu yang terletak pada pojok kiri atas meja. Lalu cari kartu dengan nilai paling rendah diantara sisa kartu yang tersedia. Tukarkan kartu yang baru saja terpilih dengan kartu pada posisi kedua. Ulangi langkah – langkah tersebut hingga posisi kedua sebelum posisi terakhir dibandingkan dan dapat digeser dengan kartu yang bernilai lebih rendah.

    Ide utama dari algoritma selection sort adalah memilih elemen dengan nilai paling rendah dan menukar elemen yang terpilih dengan elemen ke-i. Nilai dari i dimulai dari 1 ke n, dimana n adalah jumlah total elemen dikurangi 1.

Algoritmanya :

void selectionSort(Object array[], int startIdx, int endIdx) {

     int min; for (int i = startIdx; i < endIdx; i++) {

        if (((Comparable)array[min]).compareTo(array[j])>0) {

min = i; for (int j = i + 1; j < endIdx; j++) { min = j;

        }

   }

swap(array[min], array[i]);

}


3. Quick sort

    Quicksort ditemukan oleh C.A.R Hoare. Seperti pada merge sort, algoritma ini juga berdasar pada pola divide-and-conquer. Berbeda dengan merge sort, algoritma ini hanya mengikuti langkah – langkah sebagai berikut :

1. Divide

    Memilah rangkaian data menjadi dua sub-rangkaian A[p…q-1] dan A[q+1…r] dimana setiap elemen A[p…q-1] adalah kurang dari atau sama dengan A[q] dan setiap elemen pada A[q+1…r] adalah lebih besar atau sama dengan elemen pada A[q]. A[q] disebut sebagai elemen pivot. Perhitungan pada elemen q merupakan salah satu bagian dari prosedur pemisahan

2. Conquer

    Mengurutkan elemen pada sub-rangkaian secara rekursif

Pada algoritma quicksort, langkah “kombinasi” tidak di lakukan karena telah terjadi pengurutan elemen – elemen pada sub-array

Algoritmanya :

void mergeSort(Object array[], int startIdx, int endIdx) 

{

if (array.length != 1) {

mergeSort(leftArr, startIdx, midIdx);

//Membagi rangkaian data, rightArr dan leftArr

}

mergeSort(rightArr, midIdx+1, endIdx);

combine(leftArr, rightArr);

}


4. Counting sort

    Adalah sebuah algoritma sorting linear yang digunakan untuk mengurutkan ‘item’ ketika urutannya telah ditentukan dan memiliki panjang yang terbatas. Bilangan interval yang telah tetap, katakana k1 ke k2 adalah contoh dari ‘item’ tersebut. Counting sort sebenarnya merupakan metode pengurutan yang memanfaatkan index variabel array. Hanya effektif pada data yang nilainya kecil.

    Algoritma ini diproses dengan mendefinisikan sebuah hubungan urutan antara ‘item’ yang akan disorting. Katakana ‘item’ yang akan disorting adalah variable A. Maka, terdapat sebuah array tambahan dengan ukuran yang serupa dengan array A. katakana array tersebut adalah array B. untuk setiap element di A, sebut e, algoritma ini menyimpan jumlah ‘item’ di A lebih kecil dari atau sama dengan e di B(e). jika hasil sorting yang terakhir disimpan di array C, maka untuk masing-masing e di A, dibuat dalam arah yang sebaliknya, yaitu C[B(e)]=e. setelah step di atas, niali dari B(e) berkurang dengan 1.

    Algoritma ini membuat 2 passover A dan passover B. Jika ukuran dari range k lebih kecil dari ukuran input n, maka time complexity = O(n). perhatikan juga bahwa algoritma ini stabil yang berarti bahwa sambungan diselesaikan dengan langsung mengabarkan element-element yang muncul pertama kali.

    Adapun syarat algoritma ini berjalan dengan baik ialah:

1.      Data harus bilangan bulat yang bernilai lebih besar atau sama dengan nol

2.      Range data diketahui

Ada 3 macam array yang terlibat:

1.      Array untuk mengisi bilangan yang belum diurutkan.

2.      Array untuk mengisi frekuensi bilangan itu, sekaligus sebagai penghitung kejadian.

3.      Array untuk mengisi bilangan yang sudah diurutkan.

Algoritmanya :

countingsort(A[], B[], min, max, n)

for i = min to max do

C[i] = 0

C[A[j]] = C[A[j]] + 1

for j = 1 to n do

for i = min + 1 to max do

B[C[A[j]]] = A[j]

C[i] = C[i] + C[i-1]

for j = n downto 1 do

C[A[j]] = C[A[j]] – 1


5. Radix sort

    Radix sorting bisa digunakan ketika masing-masing universal element bisa dilihat sebagai sebuah urutan digit (atau huruf atau symbol lainnya). Sebagai contoh, kita bisa membuat masing-masing bilangan bulat antar 0 sampai 99 sebagai sebuah urutan dengan dua digit (seperti “05”). Untuk menyorting sebuah array dari angka 2-digit, algoritma ini membuat dua ‘passing’ sorting melalui array tersebut. Pada ‘passing’ pertama, element array disorting pada least significant decimal digit. Kunci utama dari radix sort adalah pada passing yang kedua. Hasilnya, setelah kedua passing melewati array tersebut, data yang terisi telah disorting.

6. Linear searching

    Algoritma pencarian secara linear adalah algoritma untuk mencari sebuah nilai pada table sambarang dengan cara melakukan pass atau transversal. Transversal dari awal sampai akhir table. Ada dua macam cara pencarian pada table. Algoritma mempunyai dua jenis metode yaitu dengan Boolean dan tanpa Boolean.

Tidak ada komentar:

Posting Komentar

Software Requirements Specification for <Rancang Bangun Aplikasi Transaksi Toko ATK >

https://drive.google.com/file/d/1P_JAJKNvdjBgmfHVfhKlRHmrUIJBHkou/view?usp=drivesdk